

Numerical Methods

Chapter 5: Eigenvalues and Eigenvectors

Mrs. N.BOUSAHBA

n.bousahba@univ-chlef.dz

Let A be a square matrix of order $n.\lambda$ is an eigenvalue of A if there exists a non-zero vector X such that:

$$AX = \lambda X$$

λis called the eigenvalue associated with the vector X.

X is called the eigenvector associated with the value λ .

Let A be a square matrix of order n.λis an eigenvalue of A if there exists a non-zero vector X such that:

• The eigenvalues of a diagonal matrix are the elements of the diagonal.

- The sum of the eigenvalues equals the matrix trace.
- The product of the eigenvalues equals the matrix determinant.
- The characteristic polynomial is written:

 $X_{HAS}(x) = (-1)^n X^n + (-1)^{n-1} trace(A) X^{n-1} + ... + det(HAS)$

Example:

$$\mathcal{A} = \begin{pmatrix} 1 & 3 & 3 \\ -2 & 11 & -2 \\ 8 & -7 & 6 \end{pmatrix} \qquad \mathcal{X} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Check that X is an eigenvector of the matrix A associated with an eigenvalueλwhich must be calculated.

Calculation of eigenvalues:

\(\) \(\) is an eigenvalue of the matrix A; thus there exists a non-zero vector X such that:

$$AX = \lambda X$$

That is to say
$$(A - \lambda I_n)X = 0$$
 \longrightarrow $Det(A - \lambda I_n) = 0$

Calculation of eigenvalues:

Example: Let A be the previous square matrix:

$$Det(A - \lambda I_n) = \begin{pmatrix} 1 & 3 & 3 \\ -2 & 11 & -2 \\ 8 & -7 & 6 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{0}$$

That's to say
$$\begin{vmatrix}
1 - \lambda & 3 & 3 \\
-2 & 11 - \lambda & -2 \\
8 & -7 & 6 - \lambda
\end{vmatrix} = 0$$

Calculation of eigenvalues:

Example: Let A be the previous square matrix:

$$\begin{vmatrix} 1-\lambda & 3 & 3 \\ -2 & 11-\lambda & -2 \\ 8 & -7 & 6-\lambda \end{vmatrix} = 0$$

$$\begin{vmatrix} -\lambda^3 + 18\lambda^2 - 51\lambda - 182 = 0 \\ -(\lambda + 2)(\lambda - 7)(\lambda - 13) = 0 \end{vmatrix}$$

The eigenvalues of A are: λ_1 = -2; λ_2 = 7; λ_3 =13.

The polynomial characteristic of A is: $X_A(x) = -x^3 + 18x^2 - 51x - 182$

We can verify that: $X_A(x) = (-1)^3 x^3 + (-1)^2 Trace(A) x^2 - 51x + Det(A)$

Example 1:

Let A be the matrix below; calculate A^n for $0 \le n \le 5$.

$$A = \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix}$$

Solution:

$$A^{0} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} A^{1} = \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix} A^{2} = \begin{pmatrix} 14 & 5 \\ -10 & -1 \end{pmatrix} A^{3} = \begin{pmatrix} 46 & 19 \\ -38 & -11 \end{pmatrix}$$

$$A^{4} = \begin{pmatrix} 146 & 65 \\ -130 & -49 \end{pmatrix} \qquad A^{5} = \begin{pmatrix} 454 & 211 \\ -422 & -179 \end{pmatrix}$$

Example 2:

Let M be the matrix below; calculate M² and M³.

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Solution:

$$\mathbf{M}^{2} = \begin{pmatrix} \mathbf{a}^{2} + \mathbf{bc} & \mathbf{ab} + \mathbf{db} \\ \mathbf{ac} + \mathbf{dc} & \mathbf{d}^{2} + \mathbf{bc} \end{pmatrix}$$

$$\mathbf{M}^{3} = \begin{pmatrix} \mathbf{a}^{3} + 2\mathbf{a}\mathbf{b}\mathbf{c} + \mathbf{b}\mathbf{c}\mathbf{d} & \mathbf{b}\mathbf{a}^{2} + \mathbf{a}\mathbf{b}\mathbf{d} + \mathbf{b}\mathbf{d}^{2} + \mathbf{b}^{2}\mathbf{c} \\ \mathbf{c}\mathbf{a}^{2} + \mathbf{a}\mathbf{c}\mathbf{d} + \mathbf{b}\mathbf{c}^{2} + \mathbf{c}\mathbf{d}^{2} & \mathbf{d}^{3} + 2\mathbf{b}\mathbf{c}\mathbf{d} + \mathbf{a}\mathbf{b}\mathbf{c} \end{pmatrix}$$

What is complicated in calculating the powers of a matrix is that all the coefficients are dispersed during the multiplications.

Simple case:

If A is a diagonal matrix, its power A^n is diagonal too and each element a_{ii} from A^n equal to the element a_{ii} of A raised to the power n $(a_{ii}^{(n)}=as_{ii}^n)$.

Example:

$$\mathbf{M} = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 5 \end{pmatrix} \qquad \mathbf{M}^{\mathbf{n}} = \begin{pmatrix} 3^{\mathbf{n}} & 0 & 0 \\ 0 & 7^{\mathbf{n}} & 0 \\ 0 & 0 & 5^{\mathbf{n}} \end{pmatrix}$$

Trick:

If we can factorize A into $A = PDP^{-1}$ such that D is a diagonal matrix and P^{-1} is the inverse matrix of P, we can thus easily calculate A^n .

$$A = PDP^{-1}$$

$$A^2 = (PDP^{-1}) (PDP^{-1}) = PD(P^{-1}P)DP^{-1} = PDIDP^{-1} = PD^2P^{-1}$$

$$A^3 = (PD^2P^{-1})(PDP^{-1}) = PD^3P^{-1}$$

. . .

$$A^n = PD^nP^{-1}$$

Previous example:

$$A = \begin{pmatrix} 4 & 1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

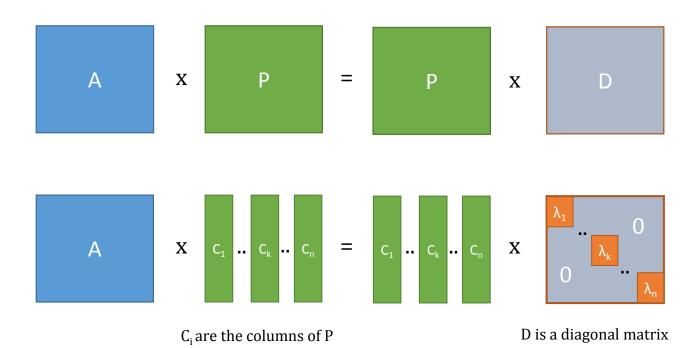
$$P = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \qquad P^{-1} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

$$A^{n} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 3^{n} & 0 \\ 0 & 2^{n} \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

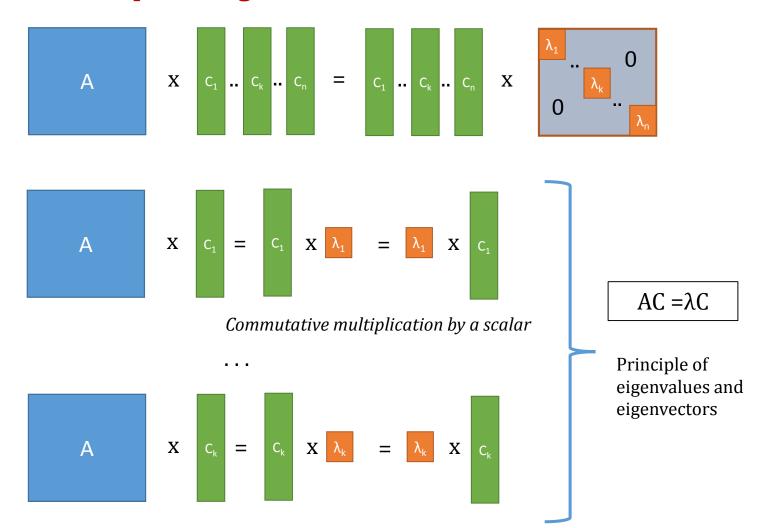
$$\mathbf{A}^{n} = \begin{pmatrix} -2^{n} + 2 \times 3^{n} & -2^{n} + 3^{n} \\ 2^{n+1} - 2 \times 3^{n} & 2^{n+1} - 3^{n} \end{pmatrix}$$

Relationship with eigenvalues:

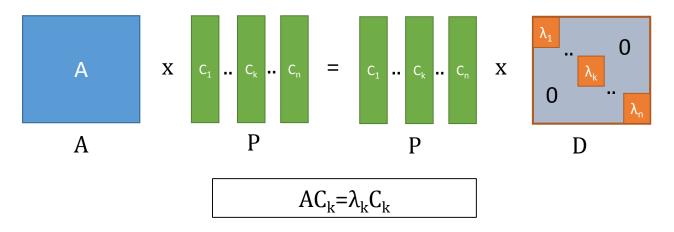
$$A = PDP^{-1} \Leftrightarrow AP = PD$$



Relationship with eigenvalues:

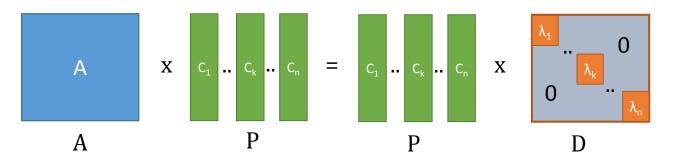


Relationship with eigenvalues:



- The matrix P is formed from the eigenvectors of the matrix A (each column P_k of the matrix P corresponds to an eigenvector C_k).
- \triangleright The matrix D is formed from the eigenvalues of the matrix A (each elementD_kin the diagonal of D corresponds to an eigenvalue λ_k).

Relationship with eigenvalues:



To calculate A^m , we first calculate the eigenvalues λ_i of A and the corresponding eigenvectors C_i , then we form the matrix D (diagonal matrix) from the eigenvalues λ_i and the matrix P from the eigenvectors C_i from A.

Then we calculate D^m (diagonal matrix containing $(\lambda_1)^n$, $(\lambda_2)^n$.. $(\lambda_n)^m$ as diagonal values.

Finally we calculate $A^m = P \times D^m \times P^{-1}$.

The order of correspondence between the λ_i and the C_i .

Example:

Let the matrix A be the following:

$$A = \begin{pmatrix} 3 & 0 & -2 \\ 4 & 5 & -1 \\ 0 & 0 & 7 \end{pmatrix}$$

- 1- Calculate the eigenvalues and eigenvectors of A, and deduce the matrices P and D such that A=PDP⁻¹.
- 2- Calculate A⁵, then find the formula for Aⁿ.

Example:

1- Eigenvalues:

$$|A-\lambda I| = 0 \iff \det \begin{pmatrix} 3-\lambda & 0 & -2 \\ 4 & 5-\lambda & -1 \\ 0 & 0 & 7-\lambda \end{pmatrix} = 0$$

$$(3-\lambda)(5-\lambda)(7-\lambda) = 0 \Leftrightarrow \lambda_1 = 3; \lambda_2 = 5; \lambda_3 = 7.$$

Example:

1- Eigenvectors:

$$\lambda_1 = 3$$
:

$$HASX_1 = \lambda_1 X_1 \Leftrightarrow AX_1 = 3X_1$$

$$X_1 = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 such as $X_1 \neq 0$

$$3x_{1}-2x_{3}=3x_{1}$$

$$4x_{1}+5x_{2}-x_{3}=3x_{2}$$

$$7x_{3}=3x_{3}$$

$$\begin{bmatrix}
3x_1 - 2x_3 = 3x_3 \\
4x_1 + 5x_2 - x_3 = 3x_2 \\
7x_3 = 3x_3 \Leftrightarrow x_3 = 0
\end{bmatrix}
\begin{cases}
3x_1 = 3x_3 \\
x_2 = -2x_1 \\
x_3 = 0
\end{cases}$$

$$X_1 = \begin{bmatrix}
\frac{1}{2} \\
-1 \\
0
\end{bmatrix}$$

Example:

1- Eigenvectors:

$$> \lambda_2 = 5$$
:

$$HASX_2 = \lambda_2 X_2 \Leftrightarrow AX_2 = 5X_2$$

$$3x_{1}-2x_{3} = 5x_{1}$$

$$4x_{1} + 5x_{2} - x_{3} = 5x_{2}$$

$$7x_{3} = 5x_{3}$$

$$\begin{bmatrix}
3x_1 - 2x_3 = 5x_1 \\
4x_1 + 5x_2 - x_3 = 5x_2 \\
7x_3 = 5x_3 \iff x_3 = 0
\end{bmatrix}$$

$$\begin{bmatrix}
3x_1 = 5x_1 \iff x_1 = 0 \\
5x_2 = 5x_2 \\
x_3 = 0
\end{bmatrix}$$

$$\begin{cases}
0 \\
1 \\
0
\end{cases}$$

$$X_{2} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \text{ such as } X_{2} \neq 0$$

Example:

1- Eigenvectors:

$$> \lambda_3 = 7$$
:

$$HASX_3 = \lambda_3 X_3 \Leftrightarrow AX_3 = 7X_3$$

$$3x_{1}-2x_{3} = 7x_{1}$$

$$4x_{1} + 5x_{2} - x_{3} = 7x_{2}$$

$$7x_{3} = 7x_{3}$$

$$3x_{1}-2x_{3} = 7x_{1}$$

$$4x_{1} + 5x_{2} - x_{3} = 7x_{2}$$

$$7x_{3} = 7x_{3}$$

$$X_3 = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \text{ such as } X_3 \neq 0$$

$$\begin{bmatrix}
3x_1 - 2x_3 = 7x_1 \\
4x_1 + 5x_2 - x_3 = 7x_2 \\
7x_3 = 7x_3
\end{bmatrix}$$

$$\begin{bmatrix}
4x_1 = -2x_3 \iff x_1 = -\frac{1}{2}x_3 \\
x_2 = -\frac{3}{2}x_3 \\
7x_3 = 7x_3
\end{bmatrix}$$

$$\begin{cases}
4x_1 = -2x_3 \iff x_1 = -\frac{1}{2}x_3 \\
x_2 = -\frac{3}{2}x_3 \\
7x_3 = 7x_3
\end{cases}$$

$$\begin{cases}
4x_1 = -2x_3 \iff x_1 = -\frac{1}{2}x_3 \\
x_2 = -\frac{3}{2}x_3 \\
7x_3 = 7x_3
\end{cases}$$

Example:

1- PDP decomposition⁻¹:

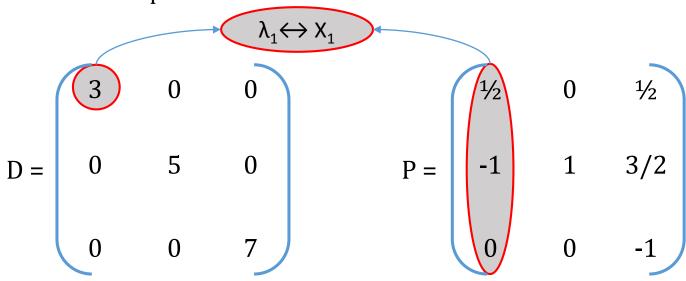
$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{pmatrix}$$

$$P = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ -1 & 1 & \frac{3}{2} \\ 0 & 0 & -1 \end{bmatrix}$$

P is a matrix formed from the eigenvectors of A:

Example:

1- PDP decomposition⁻¹:



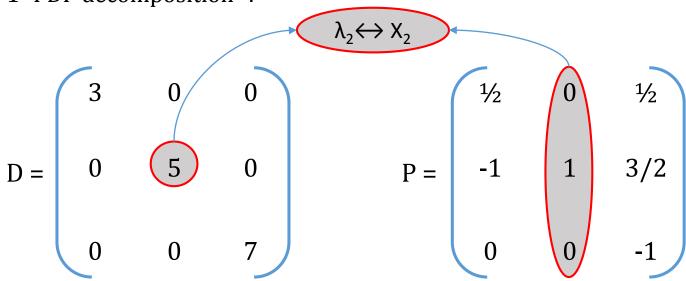
D is a diagonal matrix containing the eigenvalues of A:

P is a matrix formed from the eigenvectors of A:

The correspondence between the λ_i and X_i

Example:

1- PDP decomposition⁻¹:



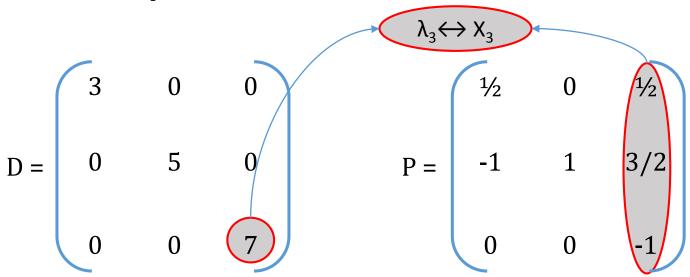
D is a diagonal matrix containing the eigenvalues of A:

P is a matrix formed from the eigenvectors of A:

The correspondence between the λ_i and X_i

Example:

1- PDP decomposition⁻¹:



D is a diagonal matrix containing the eigenvalues of A:

P is a matrix formed from the eigenvectors of A:

The correspondence between the λ_i and X_i

Example:

1- PDP decomposition⁻¹:

$$D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7 \end{pmatrix} \qquad P = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ -1 & 1 & \frac{3}{2} \\ 0 & 0 & -1 \end{pmatrix}$$

$$P^{-1} = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 5/2 \\ 0 & 0 & -1 \end{pmatrix}$$

Example:

We can clearly verify that:

$$= \begin{bmatrix} 3 & 0 & -2 \\ 4 & 5 & -1 \\ 0 & 0 & 7 \\ A & A \end{bmatrix}$$

Example:

2- Power of A⁵:

$$A = P*D*P^{-1} \Leftrightarrow A^5 = P*D^5*P^{-1}$$

$$D^{5} = \begin{pmatrix} 3^{5} & 0 & 0 \\ 0 & 5^{5} & 0 \\ 0 & 0 & 7^{5} \end{pmatrix} = \begin{pmatrix} 243 & 0 & 0 \\ 0 & 3125 & 0 \\ 0 & 0 & 16807 \end{pmatrix}$$

Example:

2- Power of A⁵:

$$A^5 = P*D^5*P^{-1} =$$

Example:

2- Power of A⁵:

$$A^5 = P^*D^{5*}P^{-1} =$$

Example:

2- Power of An:

$$A^n = P^*D^{n*}P^{-1} =$$

$$3^{n} \qquad 0 \qquad \frac{1}{2}*3^{n}-\frac{1}{2}*7^{n}$$

$$= -2*3^{n}+2*5^{n} \qquad 5^{n} \qquad -3^{n}+\frac{5}{2}*5^{n}-\frac{3}{2}*7^{n}$$

$$0 \qquad 0 \qquad 7^{n}$$

Appendix:

Exercise:

Let the matrix A be the following:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{bmatrix}$$

- Calculate the determinant and trace of A.
- Give the characteristic polynomial of A.
- Knowing that $\lambda=1$ is an eigenvalue of A, without using the formula $|A-\lambda I|=0$ calculate the 2 remaining values.
- Give the PDP decomposition⁻¹ from A then deduce the formula of Aⁿ.
- Taking advantage of the formula of Aⁿalready calculated, deduce A⁻¹and A⁻².
- Compare the results obtained with the traditional calculation of the inverse of a matrix.